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ABSTRACT OF THE THESIS

Content Adaptive Encoding Method for High Frame Rate

Screen-Camera Communication

by Yaqin Tang

Thesis Director: Professor Marco Gruteser

As both screen displaying speed and camera capturing speed has been improved signif-

icantly over recent years, there has been increasing interest in using this technique to

explore new ways of visual communication yet remain unobtrusive to human eyes.

This thesis proposes a content adaptive system that can communicate between a high

speed screen and a high speed camera while hiding information from human perception.

The novel content adaptive embedding approach for this visual light communication

system is implemented by applying texture range selection and edge avoiding on a

checkerboard pattern for the original image to embed more information in image regions

that are suitable for flicker-free communication. At the receiver, the embedding regions

are identified by tracking temporal signal amplitude alteration. With such techniques,

the system can achieve near zero flicker perception while successfully communicating a

large volume of information between the screen and camera. To evaluate the system,

we test 10 static and dynamic color videos displaying at 120fps and place the camera
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70cm away in a stand while capturing the video at 240fps. Results show that all the 10

videos can achieve near zero flicker and provide an average capacity of 16.52kbps and

with an average bit error rate of 5%.
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Chapter 1

Introduction

1.1 Motivation and research objectives

Screen has been widely used in our daily life to convey rich information visually. Mean-

while, with the fast progress of smartphones being capable of capturing videos at high

speed, screen-camera communication emerged in diverse applications and has been a

hot research topic over recent years. There are works focusing on improving the vi-

sual experience of the screen side as well as efforts to increase system capacity for the

communication channel. However, there is no work that can achieve a satisfactory re-

sults on both evaluation metrics at the same time. Trade-offs exists on the design of

the screen-camera communication system, and in this thesis, our objectives is to ex-

plore factors that contribute viewing experience on the screen and balance the trade-off

between video quality and communication efficiency.

In our efforts of trying to understand those effects and find out a balance for the system

design. We conduct comprehensive experiments on different factors that might affect

flicker perception, i.e. screen video viewing experience and find out some aspects would

give us useful insights on the design. The first one is the video displaying frame rate on

screen. Research results shown that higher frame rate would result in less flicker. Image

texture as well as image contour are also important factors to consider. As a short state,

the more complex the image content is, the easier it is to hide information.
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Based on the insightful understanding of the affecting factors, in this thesis we first pro-

pose a content adaptive encoding algorithm to produce flicker-free screen video viewing

experience. This technique is realized by image analysis of video frames and we aim at

encoding those regions of the image that is good to encode. In this thesis, we use image

pixel intensity range value selection method to set a reasonable threshold as a metric

to determine the region of interest for each video. Secondly, our encoding method is

both spatially and temporally, which helps to largely improve system capacity. Finally,

the screen-camera communication system is robust enough with low bit error rate on

the receiver side by using temporal signal amplitude difference comparison. Since the

screen side’s information is encoded into different regions based on different image con-

tent, we explore ways of automatically identifying the encoded patterns on the camera

side and try to improve the accuracy in ways such as noise reduction, communication

environment, camera calibration and etc.

In summary, to address the limitations and challenges of existing works, our research

objective is to explore psychovisual factors that cause flicker perception and propose a

novel flicker-free screen-camera communication systems modulated both spatially and

temporally so that it’s robust enough to achieve reliable communications with high

throughput and high accuracy.

1.2 Background

Research works on screen-camera communication start from direct visible codes and

marks on screen. PixNet [1] proposes a technique to modulate high-throughput 2D

barcode and optimize high-capacity LCD-camera communication by using the orthogo-

nal frequency-division multiplexing (OFDM) digital multi-carrier modulation method.
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COBRA [2] improves the barcode system with color in a real-time phone to phone com-

munication scenario, and aimed to improve the decoding accuracy caused by blurring

during motion activities. The static barcode technique is widely used nowadays. For

example, all the products in the supermarket are marked with barcode to represent

their property and information. Another common scenario is the barcode on the mail

serving as tracking information. Furthermore, another breakthrough for visual codes

screen-camera communication is the emerging of steganography or watermarking tech-

nique [3] which is realized by embedding a spatial code (e.g., QR-code [4]) in the display

image yet still visible to human eyes, such as the name card on Wechat, one of the most

popular chatting applications. In this case, people just need to scan the name card in

QR-code format and can get personal information immediately.

On the other hand, however, more recent studies tend to focus on establishing invisible

screen-camera communication system with the emerging of the term Visual MIMO [5],

where the spatial light spectrum serves as a multi-channel in the communication system

and tend to provide with a real-time dynamic and invisible screen-camera communica-

tion system. Representative works are VR Codes [6] takes advantage of the fact that

only mixed colors are perceivable to huamn eyes, they uses high-frequency red and green

light to communicate with cameras on smartphone and maintains the communication

process invisible to human eyes. InFrame++ proposes a concurrent, dual-mode, full-

frame communication system by multiplexing data onto videos of complementary frame

composition, hierarchical frame structure, and CDMA-like modulation [7]. HiLight en-

codes data into pixel translucency change on top of screen content by varying the color

between black and white across different grids of the communication layer based on the

content area color [8]. These recent works focused interest and efforts for building an

unobtrusive screen-camera communicaion system with different methods for embedding

invisible codes hidden from contents being displayed on the screen.
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1.3 Organization of the thesis

The rest of the thesis is organized as follows.

In chapter 2, related works on screen-camera communication system is introduces and

various factors, such as frame rate, image content, image contour and angle of view,

that tend to cause flickers are explored.

In Chapter 3, the overall system design is proposed. The contend adaptive encoding

method in the screen transmitter side are extensively discussed and the techniques for

the camera to determine the original encoded pattern and the robust decoding scheme

on the receiver side are explained in detail.

In Chapter 4, the experiments settings are given and the proposed system prototype

implementation and how the experiments are conducted are fully described.

In Chapter 5, the metrics to evaluate system performance are introduced and experi-

ments results in real video scenarios are given and explained.

Finally, chapter 6 concludes the thesis and discusses promising applications from this

work and discusses some remaining issues left as future work and beyond.
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Chapter 2

Related Works and Flicker Perception Factors

2.1 Related works

Screen-camera communication is initially established with visible codes like barcode

technique and then improves and progresses to invisible codes embedded. In addition,

later works for Video watermarking and steganography also make it imperceptible to

encode messages into images and videos [9, 10]. Moreover, a more recent work, Implic-

itCode [11], aims at boosting the communication capacity with a joint efforts of existing

techniques of HiLight, VRCodes and Inframe. Also, there are other extensions of works

include solving the frame synchroniztion issue [12], extending the supported range of

operation [13], and an improvement of the robustness of the system and its communi-

cation throughtput [14]. Following this trend, it’s obvious to see that researchers are

trying to improve the screen-camera communication system in two aspects: visual expe-

rience on the screen side and communication performance on the camera side. Thus it’s

worth an effort to explore both aspects to improve the performance of screen-camera

communication.

Prior knowledge and researches show that ficker perception has been well studied over

the years on a single light source, where there is conclusion states that direct visual

flicker perception is negligible at frequencies of 100 Hz or higher in [15–17]. Since the

experiments are conducted on single light source and in our scenario we are using screen
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as the displaying platform, it’s an important work to address for some psychovisual fac-

tors that might affect flikcer perception and as a result, leads to a better encoding

scheme direction. Also, the capacitance of existing works for both visible and invisible

codes are very limited. Even though there are studies of communications using tem-

porally modulated light source. The transmitter is a light source modulated at high

temporal frequencies. The specialized sensors in this system can be photo-diodes or

high speed camera [18]. This idea might somehow improve the capacitance and from

another side, though the photo-diodes can receive the transmitted signals, they can-

not simultaneously capture images for human consumption, which leads us to think of

another solution to fully exploit high speed screen-camera communications.

2.2 Factors that affect flicker perception

The term flicker is a perceptual attribute in the psychophysics of vision, normally

defined for light source or screen displays, seen as an apparent or obvious fluctuation

and change in the brightness of the displaying surface [19]. Since flicker perception are

very annoying and dizzy to human eyes, which is not a positive experience. It is of high

importance to learn the mechanisms behind it and find a way to best reduce flicker.

This general idea has been applied to all kinds of areas such as TV, camera, home

lightening and etc. However, prior psychovisual studies are mainly focused on how to

reduce flicker in a single light source. Illuminated by previous work and based on the

fact that screen display are actually a collection of light sources, we will follow the idea

on previous research work on various effects that may contribute to perceivable flicker,

such as the frame rate, image content, image contour and the viewer’s field of view and

etc. And aims to expand these findings to screen display.

A good communication system should be able to carry information, and the way how
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visual light communication system embed information is to use markers, images or

videos as carrier and embed information in. However, this will introduce brightness

changes on the screen . Therefore, embedded screen-camera communication can natu-

rally generate flicker. From this motivation, we explore how to balance the conflicting

goals of embedding information and avoiding flicker, thus providing guidelines for en-

coding method of the screen-camera communication system. Note that the following

experiments are conducted in the same experimental environment discussed in Chapter

4 and the level of flicker is assessed by students in this research group, since there’s no

standard objective metrics to evaluate flicker perception in existing literatures.

2.2.1 Frame rate

It has long been known that flicker perception is prominent for luminance fluctuations

below 100 Hz [15, 16]. This was determined with 2 deg circular disk on a uniform

background of the same time average luminance. Although this frequency threshold

was determined using a single light source, it is still applicable if we consider the modern

display as a collection of LED light sources.

In our case, the fluctuation is caused by switching between bits at the same position

of the video across frames. Since such bit streams are random, we are constrained by

the largest differences between the codewords, the available display refresh rate (up to

144 Hz), and the camera capture rate (up to 240 fps). Given the latter two constraints,

we can expect to display at 120 fps. The maximum codeword distance can then be

determined accordingly.
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2.2.2 Modulation amplitude

The system aims at hiding information both spatially and temporally. Unavoidably,

there will be consecutive same modulation method in the random bits stream, thus

reducing displaying frequency at the moment, which causes flicker as from conclusions

in [15, 16]. To solve this problem, we propose to use Manchester encoding scheme to

ensure there’s only two same bits at a time, which means the minimum frame rate will

be above 60fps. In order to tolerate the occasional half the signal frequency caused by

temporal embedding, we conduct experiments by placing two uniform grayscale blocks

side by side (Figure 2.1). In each run, the left block has a fixed intensity value x,

while the right block’s color flips between x + α and x − β at 120 fps. Across runs, x

varies from 0 to 255 at steps of 25. Experiments show that the color deviation without

inducing flicker perception is α = 2 and β = 3. In other words, only very slight color

differences between adjacent blocks can be tolerated. This suggests very limited scope

for encoding bits directly using pixel intensity changes.

   x    x

 ...

Frame 1 Frame 2

Figure 2.1 Siganl Amplitude Experiment: the grayscale block on the left has a fixed intensity
value while the right block changes color altenatively. Experiments show that α = 2 and β = 3
is the largest pair tolerating flicker-free observation.

2.2.3 Image content

Images of natural scenes often contain many textured regions that we can use in our

coding method. It is well known that human vision is sensitive to even small intensity
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edges [20, 21] and that texture affects the perception of intensity transitions [22]. As

a practical consequence of these perception traits, intensity modifications in smooth

regions are more likely to cause flicker than textured regions. To take advantage of this

flicker reduction, our method adapts to image content by detecting textured regions and

embedding message bits within this space. To qualitatively evaluate the intuition of

texture-based embedding, we experiment with 20 videos of varied content. We divide

each video frame into smooth and textured regions and embed bits into the smooth

regions only, the textured regions only, or all regions to compare the flicker percep-

tion. Fig. 2.2 shows that embedding into textured regions exhibits the least amount of

flicker.
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Figure 2.2 Performance of flicker perception for different video samples: we divide the level of
flicker into five categories, and the bar along the y-axis counts for the number of test videos
that fall into its corresponding categories. It’s clear that encoding into texture region has less
amount of flicker than vice versa.

Besides image texture, image brightness and image contrast is also a point of interest to

explore. Experiments are conducted with the same set of videos in the same settings.

For image brightness (our discussion below is in the range of pixel intensity value from
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0 to 255), we create videos side by side comparing with encoding the whole image,

encoding only dark regions (average brightness smaller than 85), encoding only bright

regions (average brightness greater than 170) and encoding mid-tone regions with aver-

age brightness in between. We repeat the comparison for 20 videos with different image

content and results show that the level of flicker perception is quite similar regarding

difference brightness encoding regions. Therefore, we conclude that image brightness is

not as a large factor as to affect flicker perception.

For image contrast, it is a visual concept that is determined by the difference in the

color and brightness of the object. We measure the contrast of an image by Michelson

contrast [23], where it is defined as the following equation and Imax, Imin represent the

highest and lowest luminance separately.

Michelson contrast =
Imax − Imin

Imax + Imin

(2.1)

In such case, contrast equals zero means the image has no contrast. In our experiments,

we analyze the same 20 videos and adjust its contrast range from 0 to 1 (normalized)

with a step of 0.1. Table 2.1 is an example of the image after flipping its contrast from

the original image. We do this for all the 20 videos available and compare the flicker

perception for each video. We conclude from the results that image contrast is not a

major factor to influence flicker perception but might help the video fall into the camera

sensitivity range, thus improving accuracy (We will discuss this in Chapter 3).

2.2.4 Edge effect

From the grayscale block experiment illustrated in Figure 2.1, we also observe that

when two neighboring blocks modulated with the same phase i.e. both the left and right

block in one frame is x+α would cause no flicker at the edge, while those modulated
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Original image Image after change of contrast

Table 2.1 Comparison of original image and image after change of contrast: the left side image
is the original image and the right side image is the one after flipping its contrast.

with different phases i.e. left block is x+α while right block is x-β would introduce

flicker. Furthermore, if separate the two blocks with larger distance, this effect will be

minimized. In trying to understand this edge effect, we find literature stating that this

is the so-called saccades effect, which are defined as rapid, ballistic movements of the

eyes that abruptly change the point of fixation. The authors in [24] discusses edges

introduced by a white and black part each stands in half of a frame, and their results

demonstrate that even at a switching frequency of up to 500Hz, we can still observe

flicker by alternating these two halves rapidly. It has also been observed that when the

modulated light source contains a spatial frequency edge, human subjects can still see

flicker with frequency over 200 Hz.

Since it is common to use a block of pixels to encode bit stream, we also encounter

edges between adjacent blocks of different bits. When the two neighboring blocks are

modulated with different phases, flicker is noticeable. However, based on the observa-

tion, we can still try to separate the blocks with some distance or apply edge blending

technique to reduce or minimize the flicker caused by edge effect.
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2.2.5 Viewer’s field of view

In the course of experiments, we also observe that the level of flicker perception depends

on the size of the encoded regions in the video and the distance of the viewer from

the video displayed. We capture both effects with a single metric, the size of the

”viewer’s field of view”. To measure this size, we use a square block of different sizes

for encoding without changing other parameters and view the video from difference

distances. Results show the smaller area fell into viewer’s retina, i.e., the smaller block

size or further distance, the less flicker the viewer perceives. This suggests using only

small code blocks for encoding and avoiding parts of the image scene that might attract

attention.

2.3 Conclusion

Chapter 2 aims to explore factors that affect flicker perception. From the discussion,

we know that higher frame rate tends to produce less flicker, resulting in choosing

Manchester code as our basic encoding scheme. The advantage of Manchester code is

to ensure displaying frequency to be above 60fps. To minimize the flicker caused by the

60 fps part, we conduct experiment to find out the most suitable brightness alteration

pair is to increase by 2 and decrease by 3. To further improve the capacity of the

system, we introduce checkerboard pattern on the spatial domain. In this case, image

texture is another important factor that should be taken into account. Since we know

that if the image has more complex content, i.e. textured, there would be less flicker,

that’s the reason to choose more textured region to encode.
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Chapter 3

Overview of System Design

3.1 Content adaptive encoding method

As a restatement of our research objective, we are trying to propose a robust flicker-

free screen-camera communication system with high capacitance and low bit error rate.

Therefore, the above explorations give a good guidance of where to strive for a flicker-

free screen encoding method. The first two points, frame rate and modulation ampli-

tude, suggest opportunities for modulating bits in a small range of alteration if being

applied properly. And image texture analysis gives us a good hint to explore methods

of reducing flicker, while the image brightness, image contrast and the field of view

cannot be leveraged easily since they either don’t seem to have direct impact on flicker

perception or because the encoder side or the human observer has no control. However,

the former factors are orthogonal, indicating possible solutions for combining these fac-

tors to give the most satisfied scheme. To clarify, frame rate is a temporal property of

the video, whereas modulation amplitude and image texture mostly affect the spatial

domain of the video. Based on these insights, we design our content adaptive flicker-free

encoding method to achieve high capacity at negligible flicker, which compromises the

constraints and limitations of previous work like HiLight [8] and Inframe++ [7] where

capacitance and flicker perception cannot be achieved satisfactory at the same time,

thus distinguishing us from previous work with better system performance.
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3.1.1 Temporal dimension embedding

Since we are displaying videos on the screen as our carrier of information, and videos

are a collection of frames being displayed consecutively as time goes, we are trying to

embed different code into every frame so that the system can achieve highest capacity

as possible, that is what we called temporal dimension embedding. In trying to get our

system robust enough for any scenario, we put our analysis for random bits assigned in

the temporal domain as a more general case.

The first thing to decide from the insights is the frame rate. From what we know from

previous work, we will not prefer frame rate to be below 100 Hz, as it will cause obvious

flicker with luminance fluctuations. Therefore, based on the available display refresh

rate to be up to 144 Hz, we choose to display our video at 120 fps, which is double the

refresh rate of what we usually have to be 60 Hz in our daily life. The reason why we

not go with the highest frame rate is based on the consideration of the receiver side,

where the maximum capturing rate for smartphone is 240 fps up to date. Therefore,

if we want to capturing the video at double the frame rate, we are limited to 120 fps

at the transmitter side. Based on all these facts and considerations, we set our video

displaying frame rate to be 120 fps. However, it is not the whole story as if we are

ensured to get a flicker-free video once we display it at high refresh rate. We can still

observe flicker with random bits being assigned to the video and this phenomenon is

caused by the random bits, where there might be cases with consecutive same bits

leading to a lower frame rate. For example, For a normal ideal case, we consider the

video is always maintaining 120 fps when the bits stream is alternating every other bits.

However, for random bits stream, we cannot ensure the bits sequence, there would be

cases that two or more same consecutive bits exist side by side, at this point, it will

reduce the displaying frequency and cause obvious flicker in return.
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Illuminated by a traditional communication encoding scheme called Manchester code,

where code 1 is represented by 10 and 0 is represented by 01 in binary code system

(Figure 3.1), we can keep the frequency components of the encoded video signal above

60 Hz, where in the worst case, there’s only two consecutive bits.

1    0    0    0     1    1    0    1     0    0     1

10   01  01   01   10  10  01  10  01   01   10

Random bits 

sequence

Manchester 

code

Figure 3.1 Manchester code: bit 1 is represented by 10 and 0 is represented by 01 in binary.

Taking the advantage of Manchester code ensures a transition on every bit, it generates

less low frequency components in the modulated signal when multiple consecutive bits

are identical, even though we compromise half of the system capacity. It is worth the

effort because flicker perception is such a key factor for this high frame rate screen-

camera communication system.

Once the frame rate issue is settled, we need to fix the low frequency displaying part

producing noticeable flickers. One of the key factors to consider is to adjust the mod-

ulation amplitude. Before we go deep into this question, we need to clarify how the 0,

1 bits in binary system work in our case. Technically, these bits are another name of

image brightness alteration, where we would define 0 as slightly lower the original pixel

intensity value and 1 as adjust it to a little bit higher intensity value. The brightness

adjustment and fast alternation is the source of causing flicker perceptions, whereas we

need to come up with a largest number we can reach to maintain flicker perception to

human eyes to the minimum.
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To find out the best modulation amplitude, we have experiments designed as shown in

Figure 2.1. The left block is a fixed pixel intensity value evaluated from 0 to 255 with a

step of 25 and the right block is alternating between a brighter block x+α and a darker

block x−β. We evaluate α and β for values from 1 to 10 and find out the best pair with

the least flicker perception is α = 2 and β = 3. Therefore, with the best modulation

signal amplitude, the random bits sequence generated is combined with the sequence

of carrier image frames. For the carrier pixel values with bit 1, the intensity values will

be increased by α, which makes these pixels brighter. Similarly, for the carrier pixel

values with bit 0, the intensity values will be decreased by β, which makes these pixels

darker. And note that these pixel intensity value changes are applied to the Y channel

in each frame that contains Y, U and V channels.

As a conclusion for the temporal domain embedding, we use Manchester code to carry

our randomly generated information, which will expose the system to display at 60 Hz

in some cases and we try to minimize the flicker caused by 60 Hz display by finding

the most suitable modulation amplitude of alternating the original pixel intensity value

with either increase by 2 or decrease by 3 depending on the bits sequence. As from

the implementation side, due to the fact that the videos available in standard library

are only 30 fps no matter the video is static or motion, we need to duplicate each

frame in the original video as four frames in the video that will be displayed on our

120 fps screen. Therefore, these four frames are containing exactly the same image

content in both static and motion videos. We use these four frames to embed two bits

of information. That is, the first two frames in these four frame represents 1 bit of

information (since we are using Manchester code, so we need two frames to represent

one bit), and the following two frames for another bit and so on. The process described

above can be further illustrated in Figure 3.2.
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F1 F2 F3 F4
Original video

(30 fps) 1/30s 1/30s 1/30s

1/120s

1 110 0 0 0Actual Message

(60fps)

Displaying video

(120fps)

+2

       -3

       +2

 -3

Figure 3.2 Temporal encoding method: The original video is 30fps and we duplicate each
original frame into four frames to be displayed at 120fps on screen. The actual message is
60fps and is represented by Manchester code with 1 to be BRIGHTER/DARKER and 0 to be
DARKER/BRIGHTER. The brighter and darker refers to pixel intensity value increase by 2 or
decrease by 3 separately.

3.1.2 Spatial dimension embedding

In order to further increase the capacity of the system, we propose to place a checker-

board pattern on top of each frame, from which the throughput of the system will be

increased significantly depending on the size of the checkerboard. We conducted ex-

periment with difference checkerboard size,and find out that with 32×32 pixel size, we

can achieve best results in terms of flicker and decoding accuracy. However, based on

the flicker perception exploration, we know that image texture and edge effect will have

an influence on flicker, and the introduction of checkerboard is also another source of

edge besides the image contour. Therefore, image texture and edge effect are the two

challenges for spatial domain embedding design.

Image texture analysis has been studied over the years. Some researchers are looking in

a small neighborhood through an image with local brightness variations from pixel to

pixel [25]. And there are others looking at a different perspective stating that texture

can be described as an attribute representing the spatial arrangement of the gray levels
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of the pixels in a region of a digital image [26]. Traditionally, there are three ways of

analyzing image texture, that is, structural approach, Fourier approach and statistical

approach. The structural approach to describe texture is defining texture as a set of

texture elements or texon occurring in some regular or repeated pattern, like sand on

the beach or bricks on the wall. In trying to understand this texton analysis, we apply

an algorithm with a training stage and a classification stage. The training stage is to

use a large amount of raw data to build a model with different textures. For example, to

distinguish leaves, sand or cars. Then use this model to do classification for the images

we want to embed. However, there are too many varieties of texture in the universe

and we don’t have such a large database to train a comprehensive model, which is time

consuming and resource limited. So this structural approach is not applicable in our

situation. The second approach, Fourier approach, is by calculating the power of the

image and classify fine, regular, and directional texture based on its different frequency

band. However, this approach is not so commonly used. Last but not least, the statistic

approach is to characterize texture with grayscale intensities alone, which is applicable

to all types of images and is computationally efficient. As a result, we choose this

statistical approach to analyze our image texture.

In this thesis, we call the statistical texture analysis approach as texture range selection

method. The way we calculate the texture of an image is illustrated in Figure 3.3. We

know that an image is a matrix containing a collection of pixel intensity values, and the

texture of the image is defined as the local variability of the intensity values of pixels.

That is, as shown in Figure 3.3, we consider a 3-by-3 neighborhood for a pixel, say 9

in the figure. It’s corresponding texture range value is evaluated by the difference of

the maximum and minimum value in the neighborhood matrix, and in this case, the

texture range value for pixel marked as 9 is 12. And if apply this algorithm in the whole

image, we have a complete texture value matrix. From the local variety, we know that
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in areas with smooth texture, the range of values in the neighborhood around a pixel

will be a small value and in areas of rough texture, the range will be larger.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

6 7 7 7 6

11 12 12 12

Minimum value in 

neighborhood
Maximum value in 

neighborhood

Texture range value:

15 – 3 = 12

Original image matrix sample            Corresponding texture value matrix

(The value inside the matrix is the pixel intensity value)

Figure 3.3 Texture range selection algorithm: the texture value of a specific pixel is calculated
by the difference of its maximum and minimum pixel intensity values surround the 3-by-3
neighborhood matrix.

Table 3.1 gives us a visualizing perspective of the transformation from original image to

texture value image. We can see that the texture value image calculated from texture

range algorithm depicts the variety of the pixel intensity value pretty accurately, which

formed as the foundation for our later analysis. With the texture range value matrix,

the next step is to determine a threshold for the level of texture we want to use. To

play around with this texture range value from 0 to 20 and look at the areas being
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Original image Texture value image

Table 3.1 Comparison of original image and texture value image: the left side image is the
original image and the right side image is the one representing the texture range of the image.

covered above the threshold, we conclude that when this value equals to 8 gives best

results in terms of flicker perception and image capacity.

On the other hand, from Figure 3.1 we notice that there are sharp edges in the texture

value image. Applying the texture range threshold cannot eliminate the sharp edges,

since the texture range value is extremely large along those sharp edges. In order to

refine the method, we need to come up with a solution to find out the uniform textured

region and ensure those regions don’t contain large areas of sharp edges. Take the

advantage that the sharp edges usually happens at where there’s immediate intensity

value change surrounding the neighborhood. Therefore, to combine the checkerboard

pattern with texture analysis, let’s take one block of the checkerboard as an example.

The block contains 32×32 pixels represented by its texture range value. If we calculate

the deviation of the block, for those blocks with sharp edges, the standard deviation of

the block should be relative large. And from our experiment, we conclude that if the

standard deviation of the block is larger than 15 pixel intensity value, then mark this

block as not good to encode since it is highly possible that the block contains sharp

edges. Furthermore, if we define the texture range value of a pixel to be above the

threshold as “good pixel”, then we also need to mark out the blocks which the number
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of “good pixels” are less than or equal to half the number of pixels in the block.

To summarize the temporal and spatial dimension embedding scheme discussed above,

we illustrate the overall design in Figure 3.8 and in algorithm 1, where as a whole

picture, we will do temporal domain embedding with alternating the brightness with

increase 2 or decrease 3 in pixel intensity value over time. And the code is represented

with Manchester code. On the other hand, for spatial domain embedding, we apply

texture range selection and edge avoiding techniques in each frame to decide which

block of the checkerboard pattern is good to embed message. And we will only embed

those “good“ pixels of the marked block. With this content adaptive encoding method,

we are expected to have a near zero flicker video being displayed at 120 fps.

3.2 Synchronization issue

Considering the video is displaying at 120 fps, we need a camera capable of capturing

videos at least the same frame rate on the receiver side. However, if the camera is

recording the video at 120 fps, there exists a synchronization issue that if the camera

starts capturing not exactly the same time of a specific frame is on display, then the

received frames are representing the transition state of two frames. However, Manch-

ester code ensures us that two frames are either alternating from low to high or high

to low, the transition state might be any value in the range of 0 to 1. Obviously, these

type of what we call tainted frames (refer to Figure 3.4) cannot convey the real message

accurately. In Figure 3.4, let the white block denotes bit 1 and black block denotes

bit 0. We can see that there’s possibility if capturing at 120 fps shown in the second

sequence. Therefore, capturing at double the frame rate can solve this problem, where

we are ensured that even though we have tainted frames, we still have clean frames in

the captured sequence. Once we decide to record at 240 fps, our next problem to solve
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is how to distinguish between clean and tainted frames.

120 fps video on 

display

Synchronization 

issue if capturing 

at 120 fps

   1                      0                     0                      1                     0   ...

            0.5                     0                     0.5                   0.5  ...

Sequence 

capturing at 240 

fps
     1                    0                      0                        1                     0  ...

  clean   tainted   clean   tainted   clean     tainted   ...

Odd set of the 

frames

Even set of the 

frames

  1                     0                       0                      1                      0  ...

      0.5                  0                     0.5                     0.5  ...

Figure 3.4 Synchronization issue between display and camera capturing: assume the first se-
quence is the video display at 120 fps, then the second sequence serves as an example of the
synchronization issue if capturing at 120 fps. To solve this problem, if we double the capturing
frame rate, we can ensure with a set of clean frames mixed with tainted frames.

The algorithm we propose here is histogram-based clean and tainted frame analysis.

Refer to the third sequence in Figure 3.4, what we first do is to separate odd and even

indexed frames into two different set as in the 4th and 5th sequences. Then calculate

the difference in two consecutive frames for a large enough number of frames, let’s say

one thousand. Theoretically, if we get the histogram of the differences between two

frames, we are expected to get a larger difference for the clean set of the frames and a
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smaller difference for the tainted set. Since Manchester code ensures a instinct change

for one bit, therefore, the maximum difference is 1 for clean frame set and maximum

for tainted frame set is 0.5. Therefore, if we go through one thousand frames in the

recorded video, after doing the histogram-based clean and tainted frame analysis, we

will be able to get the clean set of frames for decoding. As can be seen from Figure 3.5,

once we get the histogram of the difference of two sets, we can easily determine the

clean frame set is the one where two peaks on each side of y-axis is larger, and tainted

frame set is the one with a smaller peak distance. Also note that the absolute value of

the peak difference is around 5 is because we do pixel intensity value change with +2/-3

in the encoding algorithms. Once we get the clean frame set, the next step before doing

decoding is to detect the encoded pattern on the original frame.
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Figure 3.5 Histogram-based clean and tainted frame analysis: by separating even and odd frame
sets and calculating the histogram of it difference value, we get the one with larger peak distance
in the figure as the clean frame set.
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3.3 Detect encoded pattern by the receiver

The near zero flicker perception encoding method discussed in previous chapter is a

content adaptive embedding, which means different source images will result in different

encoded regions. We name those encoded regions as encoded pattern. In order to

decode the message embedded, we need to know the encoded patterns of the video,

i.e, the checkerboard matrix representing the markers of each block if it’s good to

encode or not. In the area of network communication, this problem is solved by using

a header which contains useful communication information such as address, package

size, package type and etc. However, for this screen-camera communication system,

real time performance is our priority consideration, so to use a header as the preamble

is not a good choice in our case. Hence it is a major challenge for the receiver to know

where the information is embedded before it can do actual message decoding. And we

define decoding method as for the receiver to find out the exact information hidden in

the received frames.

3.3.1 Algorithm

The first intuition to determine the encoded pattern is to regard the received frames as

the source images and follow the same encoding routine on the those frames. However,

this spatial analysis is not as promising as it’s ideal assumption. In real experiment

scenario, there are some major issues remaining that makes this method impractical.

For example, the brightness of the received frame is different from the original frame in

the sense that it will be affected by the experiment light condition, camera recording

angle, camera saturation and etc. As these factors are almost uncontrollable during the

communication process, it’s hard to find out the source of error and analyze the texture

range value distribution of the received frames and set a suitable threshold exactly



25

the same as what is in the transmitter side. Therefore, this spatial domain analysis

intuition is not considered as our priority algorithm.

The algorithm proposed here is to analyze the frames in temporal domain. Since the

information is embedded by alternating the brightness of consecutive frames, it’s rea-

sonable to detect brightness changes between consecutive frames. Based on the fact

that the displaying video at 120fps is get from 30fps original video, the two consecutive

frame will have same image content once synchronized, we can get the difference image

by subtracting those two consecutive frames and then mark the areas with large differ-

ence as encoded regions and near zero difference as non-encoded regions. See Figure 3.6

as an example, the green block marked as -1 is a non-encoded block, therefore, from the

difference matrix, we are expected to get a zero difference. However, for the blue blocks,

either change from 1 to 0 or 0 to 1, their absolute value of difference is 1, which means

a large difference depending on the modulation signal, and 5 pixel intensity value in our

case. Therefore, once we get a large amount of data representing the difference in time

domain for the same image content, we can achieve this binary classification by using

support vector machine, SVM algorithm [27], a computer algorithm to label objects

by trained models from examples [28], to get a good model to classify the encoded and

non-encoded blocks.

3.3.2 Challenges and accuracy improvement

We always want an accurate enough encoded pattern before doing real message decod-

ing, since one error here will be accumulated for information lost for that particular

block. However, in experiments and real applications, there are always challenges and

limitations. Here we will discuss aspects that might affect the accuracy of the detection,

such as frame pre-processing, camera settings and its sensitivity range etc.
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-

          Frame 1      (subtract)      frame 2      (equals)   difference matrix       

                                                                               (in absolute value)

=

Figure 3.6 Method to detect encoded pattern: from the clean frame set, get the difference matrix
by subtracting two consecutive frames. Based on Manchester code, the encoded blocks should
have a large difference while the non-encoded blocks’ difference is zero.

One of the first observation is that there are lots of noise even at the background region

of the recorded video and the light communication is not ideal, which will introduce

noise in a uncontrollable way, thus the first step to improve accuracy is to reduce those

noise as much as possible. Consider first, there would be some distortion in the process,

and second, by analyzing the difference image, we found that it mainly depicts the edges

in the image, we would let the received raw image pass a median filter to eliminate these

effects. A median filter is a nonlinear filter usually used to remove noise [29] on a image

or signal and is implemented by running through the image pixel one by one and replace

each entry with the brightness median of neighboring pixels. Furthermore, since the

embedding side has to maintain to be flicker free, the modulated signal is small, so we

will apply a low-pass filter to remove the large noises. After the received frame has pass

the two filters, we can ensure the difference image is quite clean and smooth.

The second step is to calibrate the orientation of the received frames. In the spatial

domain, we place a checkerboard pattern on top of it. Even though we know the size of

the checkerboard in the system, we still need to resize the received frame and correct its
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orientation before dividing the checkerboard pattern. Therefore, to solve this problem,

we need to warp the frames. Image warping, usually serves as a method to remove

optical distortions, is a transformation which maps all positions in one image plane to

positions in a second plane [30]. Ideally, the intensity of the warped image is the same

as the original image at corresponding points. Consider an image I1, image warping

produces a new image I2 such that in Equation 3.1.

I2(Tθ(x)) = I1(x) (3.1)

To get the warped image I2, we need to define a model for rotation, scaling and trans-

lation with four degrees of freedom. Therefore, we have Tθ(x) with the following rela-

tionship shown in Equation 3.2.

Tθ(x) = sMx+ [tx ty]
′ (3.2)

M =

cosφ −sinφ

sinφ cosφ


Once we have the smooth and warped frames, we can ideally detect the encoded pattern

by tracking temporal amplitude alteration. However, there are two aspects we need to

consider during experiment designs. The first one is the experiment light condition.

In trying to understand how environment light will affect experiment accuracy, we

conduct experiments at indoor conference room with main lights, side lights on and

all lights off. Results show that with environment lights off gives best results. And

for those lights on, there will be some noise even in the static background scene. This

insight gives us a hint that those noises come from environment light should either be

removed by filters introduced above or try to eliminate environment light influence.
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Furthermore, camera settings and its sensitivity range is also a major factor in detect

encoded pattern. Figure 3.7 depicts the iphone6 camera sensitivity curve, where we can

get that the camera can only capture pixel intensity value in the range of 25 to 240.

For brightness out of the range might suffer from camera saturation.
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Figure 3.7 Camera sensitivity curve: iphone6 camera’s sensitivity range is around 25 to 240, for
intensity value out of the range, the camera cannot capture the brightness as accurately.

3.4 Decoding Scheme

3.4.1 Captured frame pre-processing

In real applications, the receiver side is uncontrollable. Due to difference viewing or cap-

turing angle, image distortion will always exists in the captured videos. This distortion

won’t affect temporal sequence if we assume the camera is in static stand. However, in

spatial domain, distortion makes it very difficult to recover the correct location of those

blocks in the checkerboard pattern. Therefore, after we get the clean frame sets, we

need to warp all those frames similar to what we refer in Equation 3.1 and 3.2. Once we
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get all frames warped into correct perspective by the projective transformation method,

we can easily divide the frame into checkerboard patterns, as image warping will main-

tain the pixel intensity value of its corresponding points to be the same. With these

checkerboard pattern frames, we are ready to do real message decoding.

3.4.2 Decoding algorithm

Our decoding algorithm is also based on the temporal signal amplitude alternation.

In the encoded pattern detection part, we check the temporal difference of the frame

sequence to determine the blocks that’s been encoded. Similarly, once we are confirmed

with which block is encoded with real message, we just need to look into that particular

block with a synchronized two consecutive frames, if the brightness of that block is

changing from high to low, then we decode it as a bit 1 messages, otherwise we decode

it as bit 0 message. As a complementary, for motion videos, we need to check the

start of the eight frames. We can easily detect motion by calculating the pixel by

pixel difference between frames, because once there’s motion in the video, there must

be brightness change for some of the pixels inside that frame. We can conclude the

decoding algorithm described in Algorithm 2 and Figure 3.9.
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Algorithm 1 Encoding algorithm

Input: original video at 30 fps.
Output: a flicker-free video encoded with messages at 120 fps.
Extract frames from the original video.
for each frame in the extracted sequence of frames do

Calculate the texture range value matrix.
Quadruple each frame.

end for
for each frame in the quadrupled set do

for each block inside each frame do
Count the number of pixels above threshold 8 (pixel intensity value) as Num.
Calculate the block’s standard deviation of texture range value matrix as Dev.
for Num > blocksize2/2 do

if Dev < 15 then
Mask = 1 (should encode)

else
Mask = −1 (not encode)

end if
Save mask into buffer.
for every bit in real message sequence do

if biti = 1 then
framei = intensityi + 2;
framei+1 = intensityi+1 - 3;

else
framei = intensityi - 3;
framei+1 = intensityi+1 + 2;

end if
end for

end for
end for

end for
Output frames as video at 120 fps.
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Algorithm 2 Decoding algorithm

Input: recorded video at 240 fps.
Output: decoded bits stream.
Extract frames from the original video.
for each frame in the extracted sequence of frames do

Calculate histogram for odd and even frame sets.
Buffer only the clean frames.

end for
for each frame in the clean frame set do

Resize and warp the frame into correct perspective.
Crop only the image region inside each frame.
Detect the starting frame with pixel-by-pixel analysis for consecutive frame.
for each block inside each frame do

Calculate the average brightness of the block as Avgi, i is count in temporal
domain.

if Avgi > Avgi+1 then
OutBit = 1

else
OutBit = 0

end if
Save OutBit into buffer.

end for
end for
OutBit is the decoded message from recorded videos.
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Spatial domain

embedding

Time …
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Figure 3.8 Content adaptive encoding method: the original image can be color or grayscale
image, being calculated the texture range value, which represents the level of texture for the
original image, and will be placing a checkerboard on top of it as spatial embedding. In block-
wise analyis, for each block, if more than 50% of pixel is good pixel and its standard deviation
is smaller than 15, then mark this block as block should be encode. Do the same analysis in
temporal domain; alternate brightness based on real message.
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Captured frame

Warped and cropped frame;

Divide checkerboard pattern.

Average

brightness

decode:

Bit 1:

HI -> LO

Bit 0:

LO -> HI

Frame 1                                                        Frame 2

Captured frame

Warped and cropped frame;

Divide checkerboard pattern.

Figure 3.9 Temporal signal amplitude alteration decoding method: the captured video is ex-
tracted and classified for clean and tainted frames based on histogram analysis. For image
pre-processing, we need warp the frame into correct perspective and crop only the image we
want. Based on the encoded checkerboard pattern known, the camera side can do real message
decoding by tracking the signal amplitude alteration, i.e. average brightness change, in tempo-
ral domain. If the trend is from brighter to darker block, then decode as bit 1, otherwise decode
as bit 0.
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Chapter 4

Prototype Implementation

4.1 System platform

The implementation of the proposed content adaptive screen-camera communication

system consists of a transmitter and a receiver component. For the transmitter, we

take an original image or a video stream of 30 fps and a data bits stream of real

message as our input. The original 30 fps video is quadrupled and made into video of

120 fps. The real message is encoded using Manchester code and then embedded into

each frame’s “good block” with all the pixels’ intensity value either being increased or

decreased with a pre-defined signal amplitude. The “good blocks” are selected based

on image content analysis. The 120 fps video with message is a YUV sequence to be

displayed at 120 fps on a computer screen, where the refresh reate is set to be 120 Hz,

using glvideoplayer [31]. We choose an uncompressed YUV format to avoid any artifacts

caused by video compression schemes. The receiver is a smartphone camera with high

frame rate video recording capability. We choose to use iPhone6 since it allows for 240

fps capture. It captures the video sequence displayed on the display screen and detects

the message embedded inside the video sequence.

Currently, both the transmitter and the receiver work offline. We use Matlab to mul-

tiplex the original video sequence with the data stream to create encoded version of

the video. We use glVideoPlayer and a machine equiped with GPU to precisely control
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the frame rate of the displayed video. For the receiver, it also works in offline mode

- we use a smartphone camera to capture the video frames and use Matlab to run

post-processing of the recorded video.

We implement the prototypes proposed in chapter 3 and 4. For the transmitter side,

we implement the whole encoding system discussed in Figure 3.8. We analyze the input

frames and do content adaptive embedding with random bits stream inserted as a more

generalized evaluation. For the receiver side, we implement detect encoded patterns in

Figure 3.6 and real message decoding in Figure 3.9 separately, as we notice the detect

encoded patterns should be 100% accurate to maintain the performance of the decoding

algorithm, so at this point, we implement them as individual module for results analysis.

Also, there are some minor assumptions for the decoder. We assume that the decoder

knows the checkerboard size, the original video resolution and the encoded patterns

for each frame for evaluation purpose of our decoding algorithm. This eliminates pixel

offsets and error for texture analysis on the receiver side introduced from several factors,

including video distortion, ambient light change and camera exposure setting. In a full

protocol design, these parameters can be included in packet headers or inferred through

additional receiver processing.

The system evaluation experiments setting is shown in Figure 4.1. We conduct exper-

iments in a well-lit indoor office room environment using a display monitor screen as

the transmitter and a smartphone camera as the receiver. We use an ASUS VG248QE

24-inch monitor to display a set of test videos at a rate of 120 Hz. The screen resolution

is 1360×760 while video resolution is 1280×720. The displayed videos are recorded as

video streams at 240 fps with an iPhone6 using its built-in camera application in the

Slo-Mo mode. The default distance between the screen and the camera is set to 70 cm,

where the screen fills the camera image. The iPhone is mounted on a tripod.
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Figure 4.1 Experiment settings: the monitor serves as the transmitter platform to display the
encoded video at 120 fps using glVideoPlayer. Iphone6 is in stand hold and its default camera
application is set to be in Slo-Mo mode with auto-exposure fixed. The distance between the
screen and camera is 70cm for the image to fill in the camera.

4.2 Experiment video selection

We selected a set of 10 videos from two publicly available standard data sets [32, 33].

Table 4.1 and 4.2 shows screenshots of sample test video sequences. These test videos

represent a wide variety of aspects to explore. bigbuckbunny, Bosphorus and YachtRide

are examples of slow motion videos where there are large areas of background with static

natural scene and have a key role, either the bear or the boat, act as the moving object.

On the other hand, football, highway, Jockey and ReadySetGo are representatives of

relative fast motion videos. Also, Mobile has very clear sharp edges in the imag contour,

ShakeNDry is full of textured regions in the image and walking has some extremely

bright and dark regions that might be saturated in the camera side. All these factors
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are our point of interest and worth an effort to explore. Therefore, we choose these 10

videos as our test sample.

4.3 Conclusion

This chapter reveals the prototype implementation details. Such as screen resolution,

video player and video encoding process on the transmitter side as well as camera

settings and recorded video processing on the receiver side. Also, in this chapter, some

of the assumptions in the experiments are stated and the reason to choose the test

videos are explained. Based on all these information, we can move forward to the next

chapter for experiment results evaluation.
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bigbuckbunny Bosphorus

football highway

Jockey Mobile

Table 4.1 Sample test videos 1.
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ReadySetGo ShakeNDry

walking YachtRide

Table 4.2 Sample test videos 2.
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Chapter 5

System Performance Evaluation

We experimentally evaluate the effectiveness of content adaptive encoding method and

the accuracy of encoded pattern detection as well as decoding algorithm based on

temporal signal amplitude alteration.

5.1 Evaluation metrics

On the transmit side, in evaluating the level of flicker, we classify it into five levels based

on the viewing experience of the viewer. We use this subjective way to measure flicker

is because there’s no standard way of doing objective evaluation of videos on screen

right now. As shown in Figure 2.2, the five levels we have is: widespread, imitating

flicker; obvious flicker; noticeable flicker; minor flicker and no flicker observed.

On the receiver side, the primary metrics for evaluation are bit error rate and goodput.

Bit error rate (BER) is defined as the ratio of the number of error bits decoded over

total number of bits transmitted in Equation 5.1. Usually, throughput is the term in

communication field to evaluate the system, but we choose goodput over throughput

since the bit error rates can be highly variable for embedded screen-camera commu-

nications. Therefore, we define goodput as the number the correctly received bits per

unit time as in Equation 5.2.
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Bit error rate (BER) =
∑

all frames

Err

N
(5.1)

Goodput =
∑

all frames

D

t
(5.2)

where Err is the number of error bits decoded, N is the total number of bits being trans-

mitted, D is the number of correctly decoded bits and t is the transmission time.

In addition, we define transmit rate in Equation 5.3 to help evaluate the effectiveness

of our content adaptive encoding method. Note that the transmit rate in our system is

dependent on the content of the carrier frames, because it encodes more bits in image

areas that are conducive to embedding. The transmit rate therefore varies.

Transmit Rate =
∑

all frames

B × b

V × F
(5.3)

where B is the total number of encoded blocks per frame, b is the number of bits

encoded in each block, V is the video frame rate, and F is the number of frames needed

to encode one bit.

5.2 System evaluation

Following the prototype implementation steps, we test the selected sample videos for our

system. In terms of flicker perception, all the ten videos result in no flicker perception

at all if keep a viewing distance at 50cm away or further, and only some minor flicker

in small regions will be noticed if get even closer to the screen.
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5.2.1 Encoded pattern detection evaluation

For detecting the encoded pattern on the receiver side, the error rate for 10 test videos

of static scene are shown in Figure 5.1. In generally, the error rate is in the range of

2% to 6%. As can be seen, Bosphorus, YachtRide and bigbuckbunny have least error

rate. In trying to understand what major factors contribute in the error, we plot the

encoded pattern on the transmit side and difference image on receiver side (a sample

example for bigbuckbunny is shown in Figure 5.1), and different error types in Figure 5.2

for comparison. In the figure, red block means not encoded block detected as encoded

block, green block means bit 0 block detected as encoded block, blue block means bit 1

block detected as encoded block and gray blocks means original encoded blocks without

error. We learn that higher texture regions tend to have higher error rate. Therefore,

there’s a trade-off between encoding method and decoding accuracy, since we need to

encode into texture regions in order to hide information from being observed.
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Figure 5.1 Error rate for encoded pattern detection evaluation: experiments result show the
error rate of all 10 test videos are in the range of 2% to 6%.
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Encoded pattern on transmit side Difference image on receiver side

Table 5.1 Encoded pattern vs. difference image.

As a summary, for evaluating the encoded patterns on the receiver side, we can get an

error detection rate in the range of 2% to 6% for all the test videos. Consider the high

reliance of decoding algorithm on the encoded patterns, we are not including this part

in the decoding performance evaluation part.

5.2.2 Decoding algorithm evaluation

For decoding algorithm evaluation, we evaluate the communication link performance

for our system for two use-cases: static, where the visual content of the test video does

not change, and dynamic, where the visual content (i.e. background) of the test video

is changing. The experiment results for static case is shown in Figure 5.2. From the

results, we can see that the bit error rate is ensured to be within 7%. And in terms

of system capacity, the goodput for these 10 videos range from 7 - 23 kbps, because

the number of messages being embedded depend on the image content itself. Take

Bosphorus for example, we can see that there are a lot of plain texture regions in the

sample video sequence, like sky and sea water, thus leading to smaller regions being

encoded. For Mobile to reach the highest goodput is because the image content in this

video is highly textured and it contains a variety of difference objects, so there will be

more regions available for hiding information.
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bigbuckbunny Bosphorus

highway Jockey

Table 5.2 Error type for sample videos: 1. red blocks mean not encoded blocks detected as
encoded blocks, 2. green blocks mean bit 0 block detected as not encoded block, 3. blue blocks
mean bit 1 block detected as not encoded block, 4. gray blocks mean original encoded blocks
without error.

Moreover, the experiment results for dynamic case is shown in Figure 5.3. Dynamic

scene suffer from higher bit error rate but will have better flicker perception. This ob-

servation can be explained that dynamic scene has plentiful information conveyed itself.

More or less, people might focus on the moving objects much more than static back-

ground, therefore, flicker is not as noticeable. On the other side, moving objects make

it harder to do decoding, because the synchronization problem, tainted frame pollution

is much more severe in dynamic scene case. Fortunately, using our temporal signal

amplitude decoding algorithm, we can still achieve average goodput to be 16.52kbps

and maintain bit error rate within 20%. Take Jockey for example, it’s the fastest video

tested, but Bosphorus has slowest motion, therefore it’s BER is within 5%.
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Figure 5.2 System performance for static videos: in this case, the system can achieve near zero
flicker with an average goodput to be 15.16 kbps. And maintain the bit error rate to be within
7%.
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Figure 5.3 System performance for dynamic videos: in this case, the system can achieve no
flicker observed for all test videos and an average goodput to be 16.52 kbps. The bit error
rate is within 20%. Dynamic scene video contains plentiful information, so there’s a trade-off
between flicker perception and bit error rate.
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5.3 Conclusion

In this chapter, we evaluate the system performance for the test videos. In general,

all the encoded videos produce near zero flicker perception. And dynamic scene video

performs slightly better than static scene video in the flicker perspective. Considering

the system capacity, both cases can give an average goodput to be around 15 kbps.

However, for the static case, the bit error rate is within 7% and the dynamic case is

below 20%. This is because tainted frame issues and synchronization issues are severe

in this case. In addition, the encoded pattern detection method has an error rate to

be from 2% to 6%. We exclude this part from the decoding algorithm because the

decoding process is highly dependent on the accuracy of this method.
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Chapter 6

Conclusions

This thesis proposes a novel content adaptive flicker-free screen-camera communication

system. Following the insight we obtain from aspects leading to flicker perception, we

apply the Manchester encoding scheme with content adaptation pattern in an edge

avoiding checkerboard pattern. Also, we analyze factors causing error in the communi-

cation channel and propose a temporal signal amplitude alteration detection algorithm

to determine the original encoded patterns and decode real embedded messages. Re-

sults show that our system can achieve near zero flicker perception and ensure a high

communication goodput and low bit error rate at the same time.

The key contributions of this thesis are listed as follows:

1. Conducting experiments and providing insights on factors that contributes to

flicker perception of an embedded screen-camera communication system, including

frame rate, modulation amplitude, image content, edge effect and the viewer’s field

of view.

2. Proposing a content adaptive encoding method to maximize system capacity in

both temporal and spatial domain and maintaining the system to be in the near

zero flicker perception level.
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3. Identifying factors causing communication error and providing directions to im-

prove system accuracy. Investigating detection of the encoded patterns and de-

coding real embedded messages on the receiver side and proposing a temporal

signal amplitude alteration detection algorithm to achieve high accuracy for the

screen-camera communication system.

4. Providing comprehensive system performance evaluation and showing that this

content adaptive system has the performance to outperform existing methods in

the sense that it can achieve flicker-free visual light communication and maintain

high system capacity and embedded information accuracy at the same time.
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